Over-expressed human divalent metal transporter 1 is involved in iron accumulation in MES23.5 cells.

نویسندگان

  • Hua-Min Xu
  • Hong Jiang
  • Jun Wang
  • Bing Luo
  • Jun-Xia Xie
چکیده

Elevated iron accumulation has been reported in brain regions in some neurodegenerative disorders. However, the mechanism for this is largely unknown. Divalent metal transporter 1 (DMT1) is an important divalent cation transporter. The aim of the present study is to construct recombinant adenovirus encoding human DMT1 with iron responsive element (DMT1+IRE) and infect MES23.5 dopaminergic cells in order to investigate the relationship between increased DMT1+IRE expression and iron accumulation. The human DMT1 gene was obtained by RT-PCR from tissues of human duodenum. AdDMT1+IRE was successfully constructed and identified by PCR, restriction endonuclease analyses and DNA sequencing, respectively. It was able to efficiently infect MES23.5 cells, which was confirmed by RT-PCR and Western blots. When incubated with 100 microM ferrous iron for 6h, the intracellular iron levels dramatically increased in AdDMT1+IRE infected MES23.5 cells compared to the solely adenovirus infected cells. Meanwhile, the levels of hydroxyl free radicals and malondialdehyde (MDA) in these cells increased. This led to the activation of caspase-3. The apoptosis in AdDMT1+IRE infected cells was shown with hypercondensed nuclei using Hoechst staining. Analysis of DNA extracted from these cells showed the typical "ladder pattern", indicating the formation of mono- and oligonucleosomes. These results suggested that increased DMT1+IRE expression in MES23.5 cells caused the increased intracellular iron accumulation. This resulted in the increased oxidative stress leading to ultimate cell apoptosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rg1 protects the MPP+-treated MES23.5 cells via attenuating DMT1 up-regulation and cellular iron uptake.

Ginsenoside-Rg1 is one of the pharmacologically active component isolated from ginseng. Our previous study observed the protective effect of Rg1 on iron accumulation in the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-treated Parkinson's disease (PD) mice. However, the mechanisms of this neuroprotective effect of Rg1 are unknown. In this study, we elucidated pos...

متن کامل

Baicalin suppresses iron accumulation after substantia nigra injury: relationship between iron concentration and transferrin expression

Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of rotenone-induced Parkinson's disease rats. In the current study, we investigated the relationship between iron accumulation and transferrin expression in C6 cells, to explore the me...

متن کامل

Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson's disease.

Iron-induced oxidative stress is thought to play a crucial role in the pathogenesis of Parkinson's disease (PD). Based on our previous in vivo experiments showing that down-regulation of the iron transporters ferroportin 1 (FP1) and hephaestin (HP) might account for the nigral iron accumulation in 6-hydroxydopamine (6-OHDA)-lesioned animal models, in this study we investigated whether FP1 and H...

متن کامل

Deficiency of Calcium-Independent Phospholipase A2 Beta Induces Brain Iron Accumulation through Upregulation of Divalent Metal Transporter 1

Mutations in PLA2G6 have been proposed to be the cause of neurodegeneration with brain iron accumulation type 2. The present study aimed to clarify the mechanism underlying brain iron accumulation during the deficiency of calcium-independent phospholipase A2 beta (iPLA2β), which is encoded by the PLA2G6 gene. Perl's staining with diaminobenzidine enhancement was used to visualize brain iron acc...

متن کامل

Iron increases expression of iron-export protein MTP1 in lung cells.

Accumulation of reactive iron in acute and chronic lung disease suggests that iron-driven free radical formation could contribute to tissue injury. Safe transport and sequestration of this metal is likely to be of importance in lung defense. We provide evidence for the expression and iron-induced upregulation of the metal transporter protein-1 (MTP1) genes in human and rodent lung cells at both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurochemistry international

دوره 52 6  شماره 

صفحات  -

تاریخ انتشار 2008